18.     Connecting Biological and Synthetic Approaches for Electrocatalytic CO2 Reduction. S.J. Cobb, S. Rodriguez Jimenez and E. Reisner. Angewandte Chemie International Edition 2023, e202310547, DOI: 10.1002/anie.202310547

17.  Carboxysome-inspired electrocatalysis using enzymes for the reduction of CO2 at low concentrations. S.J. Cobb, A.M. Dharani, A.R. Oliveira, I.A.C. Pereira and E. Reisner. Angewandte Chemie International Edition 2023, 62, 26, e202218782, DOI:10.1002/anie.202218782

16.      Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate. C.M. Pichler, S. Bhattacharjee, E. Lam, L. Su, A. Collauto, M.M. Roessler, S.J. Cobb, V.M. Badiani, M. Rahaman and E. Reisner. ACS Catal. 2022, 12, 21, 13360–13371 DOI: 10.1021/acscatal.2c02689

15.      Engineering Electro- and Photocatalytic Carbon Materials for CO2 Reduction by Formate Dehydrogenase. V.M. Badiani, C. Casadevall, M. Miller, S.J. Cobb, R.R. Manuel, I.A.C. Pereira and E. Reisner. Journal of the American Chemical Society. 2022, 144, 31, 14207– 14216. DOI: 10.1021/jacs.2c04529

14.      Fast CO2 hydration kinetics impair heterogeneous, but improve enzymatic CO2 reduction catalysis. S. J. Cobb, V. M. Badiani, A.M. Dharani, A. Wagner, S. Zacarias, A.R. Olivera, I.A.C. Pereira and E. Reisner. Nature Chemistry, 2022, 14, 417-424, DOI: 10.1038/s41557-021-00880-2

13.      Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis, V.M. Badiani, S.J. Cobb, A. Wagner, A.R. Oliveira, S. Zacarias I.A.C. Pereira and E. Reisner. ACS Catalysis 2022, 12 ,3, 1886–1897, DOI: 10.1021/acscatal.1c04317

12.      Understanding the local chemical environment of bioelectrocatalysis. E. Edwardes Moore, S.J. Cobb, A.M. Coito, A.R. Oliveira, I.A.C. Pereira, E. Reisner, Proceedings of the National Academy of Sciences, 2022, 119, 4, e2114097119; DOI: 10.1073/pnas.2114097119

11.      Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. S. Goia, M.A.P. Turner, J.M. Woolley, M.D. Horbury, A.J. Borrill, J.J. Tully, S. J. Cobb, J.V. Macpherson M. Staniforth, N.D.M. Hine, B.R. Robinson, A. Burriss and V.G. Stavros, Chemical Science, 2022, 13, 486–496 DOI: 10.1039/D1SC04993C

10.      Diamond membrane production: The critical role of radicals in the non-contact electrochemical etching of sp2 carbon. J.J. Tully, E. Braxton, S.J. Cobb, B.G. Breeze, M. Markham, M.E. Newton, P. Rodriguez, J.V. Macpherson. Carbon, 2021, 185, 717–726 DOI: 10.1016/j.carbon.2021.09.054

9.     Miniaturized Probe on Polymer SU-8 with Array of Individually Addressable Microelectrodes for Electrochemical Analysis in Neural and other Biological Tissues. M. L. Marchoubeh, S.J. Cobb, M. Abrego, M. Hu, A. Jaquins-Gerstl, E. Robbins, J.V. Macpherson, A. Michael and I. Fritsch. Analytical and Bioanalytical Chemistry, 2021, 413, 27, 6777–6791 DOI: 10.1007/s00216-021-03327-2

8.   Assessment of acid and thermal oxidation treatments for removing sp2 bonded carbon from the surface of boron doped diamond. S. J. Cobb, F.H.J Laidlaw, G. West, M. E. Newton, R. Beanland and J. V. Macpherson. Carbon, 2020, 167, 1–10 DOI: 10.1016/j.carbon.2020.04.095

7.   Sp2 Carbon Edge Effects on the Electrode Kinetics of the Ferrocene/Ferricenium Process in an Ionic Liquid at a Boron Doped Diamond Electrode, J. Li, C. L. Bentley, S.Tan, V. Mosali, A. Rahman, S. J. Cobb, S.Guo, J. V. Macpherson, P. R. Unwin, A. M. Bond, J. Zhang. Journal of Physical Chemistry C, 2019, 123, 28, 17397–17406, DOI: 10.1021/acs.jpcc.9b04519

6.   Enhancing Square Wave Voltammetry Measurements via Electrochemical Analysis of the Non-Faradaic Potential Window. S. J. Cobb and J. V. Macpherson. Analytical Chemistry, 91, 12, 7935–7942. DOI: 10.1021/acs.analchem.9b01857

5.   An sp2 Patterned Hybrid Boron Doped Diamond Electrode for the Simultaneous Detection of Dissolved Oxygen and pH. T. L. Read, S. J. Cobb and J. V. Macpherson. ACS Sensors, 2019, 4, 3, 756–763. DOI: 10.1021/acssensors.9b00137

4.   Deconvoluting surface-bound quinone proton coupled electron transfer in unbuffered solutions. S. J. Cobb,* Z. J Ayres,* M. E. Newton and J. V. Macpherson. Journal of the American Chemical Society. 2019, 141 (2), 1035-1044 DOI:10.1021/jacs.8b11518 *Joint first author

3.   Facet-resolved electrochemistry of polycrystalline boron-doped diamond electrodes: microscopic factors determining the aqueous solvent window in aqueous potassium chloride solution. D. Liu, C. Chen, D. Perry, G. West, S. J. Cobb, J. V. Macpherson and Patrick R. Unwin. ChemElectroChem 2018, 5 (20), 3028–3035 DOI: 10.1002/celc.201800770

2.   Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. S. J. Cobb, Z. J. Ayres, J. V. Macpherson. Annual Reviews of Analytical Chemistry, 2018, 11, 20 DOI: 10.1146/annurev-anchem-061417-010107