Publications

23. Semi-Artificial photoelectrochemical-thermoelectric device for CO2 fixation employing full solar spectrum utilisation. S. J. Cobb, C. Pornrungroj, V. Andrei, V. M. Badiani, L. Su, R.R. Manuel, I.A.C. Pereira and E. Reisner. Device, 100505 (2024) DOI: 10.1016/j.device.2024.100505

22. Anisotropic Heterobimetallic Nanomaterials with Controlled Composition for Efficient Oxygen Reduction at Ultralow Loading. S. Ming, S.J. Cobb, M. Rahaman, N. Sammy, E. Reisner and A. E. H. Wheatley, Adv. Funct. Mater., 2411006 (2024), DOI: 10.1002/adfm.202411006

21. Ultrafast Spectroelectrochemistry of the Catechol/o-Quinone Redox Couple in Aqueous Buffer Solution, S. Goia, G.W. Richings, M. A. P. Turner, J. M. Woolley, J. J. Tully, S. J. Cobb, A. Burriss, B. R. Robinson, J. V. Macpherson, V. G. Stavros. ChemPhotoChem, e202300325 (2024), DOI: 10.1002/cptc.202300325.

20. Electrostatic [FeFe]-Hydrogenase–Carbon Nitride Assemblies for Efficient Solar Hydrogen Production. Y.Liu, C. Pulignani, S. Webb, S.J.Cobb, S. Rodríguez-Jiménez, D. Kim, R. D. Milton and E. Reisner  Chem. Sci. 15, 6088–6094. (2024), DOI: 10.1039/D4SC00640B

19. Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts. M. Seif-Eddine, S. J. Cobb, K. Abdiaziz, M. A. Bajada, E Reisner and M. M. Roessler. Nat. Chem., 16, 1014–1023, (2024), DOI: 10.1038/s41557-024-01450-y

18. Connecting Biological and Synthetic Approaches for Electrocatalytic CO2 Reduction. S. J. Cobb, S. Rodríguez-Jiménez, E. Reisner, Angew. Chem. Int. Ed., 63 (8), e202310547 (2024), DOI: 10.1002/anie.202310547

17. Carboxysome-inspired electrocatalysis using enzymes for the reduction of CO2 at low concentrations. S.J. Cobb, A.M. Dharani, A.R. Oliveira, I.A.C. Pereira and E. Reisner. Angew. Chem. Int. Ed., 62 (26), e202218782 (2023),  DOI:10.1002/anie.202218782

16. Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate. C.M. Pichler, S. Bhattacharjee, E. Lam, L. Su, A. Collauto, M.M. Roessler, S.J. Cobb, V.M. Badiani, M. Rahaman and E. Reisner. ACS Catal., 12 (21), 13360–13371 (2022) DOI: 10.1021/acscatal.2c02689

15. Engineering Electro- and Photocatalytic Carbon Materials for CO2 Reduction by Formate Dehydrogenase. V.M. Badiani, C. Casadevall, M. Miller, S.J. Cobb, R.R. Manuel, I.A.C. Pereira and E. Reisner. J. Am. Chem. Soc. 144 (31), 14207– 14216 (2022), DOI: 10.1021/jacs.2c04529

14. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis. S. J. Cobb, V. M. Badiani, A.M. Dharani, A. Wagnera, S. Zacarias, A.R. Olivera, I.A.C. Pereira and E. Reisner. Nat. Chem., 14, 417–424, DOI: 10.1038/s41557-021-00880-2

13. Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis, V.M. Badiani, S.J. Cobb, A. Wagner, A.R. Oliveira, S. Zacarias I.A.C. Pereira and E. Reisner. ACS Catal., 12 (3), 1886–1897 (2022), DOI: 10.1021/acscatal.1c04317

12. Understanding the local chemical environment of bioelectrocatalysis. E. Edwardes Moore, S.J. Cobb, A.M. Coito, A.R. Oliveira, I.A.C. Pereira, E. Reisner, Proc. Natl Acad. Sci., 119 (4), e2114097119 (2022), DOI: 10.1073/pnas.2114097119

11. Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. S. Goia, M.A.P. Turner, J.M. Woolley, M.D. Horbury, A.J. Borrill, J.J. Tully, S. J. Cobb, J.V. Macpherson M. Staniforth, N.D.M. Hine, B.R. Robinson, A. Burriss and V.G. Stavros, Chem. Sci., 13, 486–496 (2022), DOI: 10.1039/D1SC04993C

10. Diamond membrane production: The critical role of radicals in the non-contact electrochemical etching of sp2 carbon. J.J. Tully, E. Braxton, S.J. Cobb, B.G. Breeze, M. Markham, M.E. Newton, P. Rodriguez, J.V. Macpherson. Carbon, 185, 717–726 (2021), DOI: 10.1016/j.carbon.2021.09.054

9. Miniaturized Probe on Polymer SU-8 with Array of Individually Addressable Microelectrodes for Electrochemical Analysis in Neural and other Biological Tissues. M. L. Marchoubeh, S.J. Cobb, M. Abrego, M. Hu, A. Jaquins-Gerstl, E. Robbins, J.V. Macpherson, A. Michael and I. Fritsch. Anal. and Bioanal. Chem., 413 (27), 6777–6791 (2021), DOI: 10.1007/s00216-021-03327-2

8. Assessment of acid and thermal oxidation treatments for removing sp2 bonded carbon from the surface of boron doped diamond. S. J. Cobb, F.H.J Laidlaw, G. West, M. E. Newton, R. Beanland and J. V. Macpherson. Carbon, 167, 1–10 (2020), DOI: 10.1016/j.carbon.2020.04.095

7. Sp2 Carbon Edge Effects on the Electrode Kinetics of the Ferrocene/Ferricenium Process in an Ionic Liquid at a Boron Doped Diamond Electrode, J. Li, C. L. Bentley, S.Tan, V. Mosali, A. Rahman, S. J. Cobb, S.Guo, J. V. Macpherson, P. R. Unwin, A. M. Bond, J. Zhang. J. Phys. Chem. C, 123 (28), 17397–17406 (2019), DOI: 10.1021/acs.jpcc.9b04519

6. Enhancing Square Wave Voltammetry Measurements via Electrochemical Analysis of the Non-Faradaic Potential Window. S. J. Cobb and J. V. Macpherson. Anal. Chem., 91 (12), 7935–7942 (2019), DOI: 10.1021/acs.analchem.9b01857

5. An sp2 Patterned Hybrid Boron Doped Diamond Electrode for the Simultaneous Detection of Dissolved Oxygen and pH. T. L. Read, S. J. Cobb and J. V. Macpherson. ACS Sens., 4 (3), 756–763 (2019), DOI: 10.1021/acssensors.9b00137

4. Deconvoluting surface-bound quinone proton coupled electron transfer in unbuffered solutions. S. J. Cobb,* Z. J Ayres,* M. E. Newton and J. V. Macpherson. J. Am. Chem. Soc., 141 (2), 1035–1044 (2019) DOI:10.1021/jacs.8b11518 *Joint first author

3. Facet-resolved electrochemistry of polycrystalline boron-doped diamond electrodes: microscopic factors determining the aqueous solvent window in aqueous potassium chloride solution. D. Liu, C. Chen, D. Perry, G. West, S. J. Cobb, J. V. Macpherson and Patrick R. Unwin. ChemElectroChem, 5 (20), 3028–3035 (2018) DOI: 10.1002/celc.201800770

2. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. S. J. Cobb, Z. J. Ayres, J. V. Macpherson. Annu. Rev. Anal. Chem., 11 (20),   463–484 (2018), DOI: 10.1146/annurev-anchem-061417-010107

1. Quinone electrochemistry for the comparative assessment of sp2 surface content of boron doped diamond electrodes. Z.J. Ayres*, S. J. Cobb*, M. E. Newton and J. V. Macpherson Electrochem. Commun., 72, 59–63, (2016) DOI: 10.1016/j.elecom.2016.08.024. *Joint first author